Some Methods in the Class String (Part 1 of 8)

Some Methods in the Class String

int length()

Returns the length of the calling object (which is a string) as a value of type int.

EXAMPLE

After program executes String greeting = "Hello!";
greeting.length() returns6.

boolean equals (Other_String)

Returns true if the calling object string and the Other_String are equal. Otherwise, returns false.

EXAMPLE

After program executes String greeting = "Hello";
greeting.equals("Hello") returns true
greeting.equals("Good-Bye") returns false
greeting.equals("hello") returns false

Note that case matters. "Hello" and "hello" are not equal because one starts with an uppercase
letter and the other starts with a lowercase letter.

(continued)

Copyright © 2010 Pearson
Addison-Wesley

Some Methods in the Class String (Part 2 of 8)

Some Methods in the Class String

boolean equalsIgnoreCase(Other_String)

Returns true if the calling object string and the Other_String are equal, considering uppercase and low-
ercase versions of a letter to be the same. Otherwise, returns false.

EXAMPLE

After program executes String name = "mary!";
greeting.equalsIgnoreCase("Mary!") returns true

String tolLowerCase()

Returns a string with the same characters as the calling object string, but with all letter characters con-
verted to lowercase.

EXAMPLE

After program executes String greeting = "Hi Mary!";
greeting.toLowerCase() returns "hi mary!".

(continued)

Copyright © 2010 Pearson
Addison-Wesley

Some Methods in the Class String (Part 3 of 8)

Display 1., Some Methods in the Class String

String toUpperCase()

Returns a string with the same characters as the calling object string, but with all letter characters con-
verted to uppercase.

EXAMPLE

After program executes String greeting = "Hi Mary!";
greeting.toUpperCase() returns "HI MARY!".

String trim()

Returns a string with the same characters as the calling object string, but with leading and trailing white
space removed. Whitespace characters are the characters that print as white space on paper, such as the
blank (space) character, the tab character, and the new-line character '\n".

EXAMPLE

After program executes String pause = Hmm :
pause.trim() returns "Hmm".

(continued)

Copyright © 2010 Pearson
Addison-Wesley

Some Methods in the Class String (Part 4 of 8)

Display 1.4, Some Methods in the Class String

char charAt(Position)

Returns the character in the calling object string at the Position. Positions are counted o, 1, 2, etc.

EXAMPLE

After program executes String greeting = "Hello!";
greeting.charAt(0) returns 'H', and
greeting.charAt(1l) returns '

e'.
String substring(Start)

Returns the substring of the calling object string starting from Start through to the end of the calling
object. Positions are counted o, 1, 2, etc. Be sure to notice that the character at position Start is included in
the value returned.

EXAMPLE

After program executes String sample = "AbcdefG";
sample.substring(2) returns "cdefG".

(continued)

Copyright © 2010 Pearson
Addison-Wesley

Some Methods in the Class String (Part 5 of 8)

Visplay 1., Some Methods in the Class String

String substring(Start, End)

Returns the substring of the calling object string starting from position Start through, but not including,
position End of the calling object. Positions are counted o, 1, 2, etc. Be sure to notice that the character at
position Startis included in the value retumed, but the character at position £nd is not included.
EXAMPLE

After program executes String sample = "AbcdefG";
sample.substring(2, 5) returns "cde".

int indexO0f(A_String)

Returns the index (position) of the first occurrence of the string A_String in the calling object string. Posi-
tions are counted o, 1, 2, etc. Returns —1 if A_String is not found.

EXAMPLE

After program executes String greeting = "Hi Mary!";
greeting.indexOf("Mary") returns 3, and
greeting.indexOf("Sally") retums -—1.

(continued)

Copyright © 2010 Pearson
Addison-Wesley

Some Methods in the Class String (Part 6 of 8)

Some Methods in the Class String

int indexOf(A_String, Start)

Returns the index (position) of the first occurrence of the string A_String in the calling object string that
occurs at or after position Start. Positions are counted o, 1, 2, etc. Returns —1 if A_String is not found.

EXAMPLE

After program executes String name = "Mary, Mary quite contrary";
name.indexOf("Mary", 1) returns 6.

The same value is returned if 1 is replaced by any number up to and including 6.
name.indexOf("Mary", 0) returns©.

name.indexOf("Mary", 8) returns —1.

int lastIndexOf (A_String)

Returns the index (position) of the last occurrence of the string A_String in the calling object string. Posi-
tions are counted o, 1, 2, etc. Returns —1, if A_String is not found.

EXAMPLE

After program executes String name = "Mary, Mary, Mary quite so";
greeting.indexOf("Mary") returns 0, and
name. lastIndexOf("Mary") returns 12.

(continued)

Copyright © 2010 Pearson
Addison-Wesley

Some Methods in the Class String (Part 7 of 8)

Display 1.4, Some Methods in the Class String

int compareTo(A_String)

Compares the calling object string and the string argument to see which comes first in the lexicographic
ordering. Lexicographic order is the same as alphabetical order but with the characters ordered as in
Appendix 3. Note that in Appendix 3 all the uppercase letters are in reqular alphabetical order and all the
lowercase letters are in alphabetical order, but all the uppercase letters precede all the lowercase letters.
So, lexicographic ordering is the same as alphabetical ordering provided both strings are either all
uppercase letters or both strings are all lowercase letters. If the calling string is first, it returns a negative
value. If the two strings are equal, it returns zero. If the argument is first, it returns a positive number.

EXAMPLE

After program executes String entry = "adventure";
entry.compareTo("zoo") returns a negative number,
entry.compareTo("adventure") returns 0, and
entry.compareTo("above™) returns a positive number.

(continued)

Copyright © 2010 Pearson
Addison-Wesley

Some Methods in the Class String (Part 8 of 8)

™~

Display 1., Some Methods in the Class String

L]

int compareToIgnoreCase(A_String)

Compares the calling object string and the string argument to see which comes first in the lexicographic
ordering, treating uppercase and lowercase letters as being the same. (To be precise, all uppercase letters
are treated as if they were their lowercase versions in doing the comparison.) Thus, if both strings consist
entirely of letters, the comparison is for ordinary alphabetical order. If the calling string is first, it returns
a negative value. If the two strings are equal ignoring case, it returns zero. If the argument is first, it
returns a positive number.

EXAMPLE

After program executes String entry = "adventure";
entry.compareToIgnoreCase('Zoo") returns a negative number,
entry.compareToIgnoreCase("Adventure™) returns 0, and
"Zoo".compareToIgnoreCase(entry) returns a positive number.

Copyright © 2010 Pearson
Addison-Wesley

String Indexes

Display 1.5 String Indexes

The 12 characters in the string "Java is fun." have indexes 0 through 11.

0 1 2 3 4 5

6

9 10 11

J a Vv a 1

S

.F

Notice that the blanks and the perjod

count as characters jn the String

Copyright © 2010 Pearson
Addison-Wesley

Escape Sequences

* A backslash (\) immediately preceding a
character (i.e., without any space) denotes an
escape sequence or an escape character

— The character following the backslash does not
have its usual meaning

— Although it is formed using two symbols, it is
regarded as a single character

Escape Sequences

Display 1.6 Escape Sequences

“'"" Double quote.

%' Single quote.

\\ Backslash.

“n New line. Go to the beginning of the next line.

“r Carriage return. Go to the beginning of the current line.
“t Tab. White space up to the next tab stop.

Copyright © 2010 Pearson
Addison-Wesley

